PROJECT SUMMARY:
Traumatic brain injury is a major health care burden world-wide. Approximately 108-332 case of head injury per 100,000 population are admitted to hospital each year. Of those with severe head injury (generally arriving in a coma) up to 40% of these die per year and 60% have severe disability. External ventricular drain (EVD) catheters are integral to the management of patients with severe traumatic brain injury (TBI), both for monitoring of intracranial pressure (ICP) and therapeutic diversion of cerebro-spinal fluid (CSF). As with other interventions the possible benefits must be weighed against the possible complications. A common and potentially devastating complication of EVD insertion is catheter-associated infection, with reported rates of 3-22% in heterogenous neurosurgical populations. Development of ventriculitis causes significant morbidity and can worsen long terml outcome of patients, and is associated with significantly increased health care costs as a result of increased medical interventions, increased intensive care unit (ICU) and hospital lengths of stay, and post-acute care costs. Antibiotic-impregnated EVDs are of uncertain benefit. Antibiotic-impregnated EVDs have been trialed with variable success; however previous trials did not include representative TBI populations, and it remains unknown whether their use in TBI patients can improve outcomes and reduce health care costs. Additionally, the rate of EVD-associated ventriculitis occurring in Australian patients with TBI has not been established. As a result of these uncertainties, considerable practice variation currently exists with both antibiotic-impregnated and non-impregnated EVDs being used. Independent, investigator-initiated randomised evidence is needed to guide local practice. This study seeks to enhance an established process of care. This will be a prospective, randomised controlled trial comparing the effect of antibiotic-impregnated EVDs on incidence of ventriculitis when compared with standard EVDs. The results will help improve the care and outcome of patients suffering TBI, as well as optimizing health care resource allocation.