Establishing an Australian pediatric peripheral neuropathy biobank : a rich future scientific research resource.

Peripheral nerve diseases result in progressive muscle weakness and wasting, and many with childhood onset may lead to significant disability and reduced survival. Spinal muscular atrophy (SMA) is a noteworthy exemplar, characterised by progressive muscle weakness and is the leading inherited cause of infant mortality. The therapeutic landscape for SMA is being transformed, with the first disease modifying treatment that may extend quality and quantity of life reaching children with SMA from June 2018, following PBS listing in Australia. Notwithstanding this milestone, there are many uncertainties regarding treatment response, effects and long term outcomes across a broad clinical population. There are critical gaps in identifying reliable, relevant, sensitive and standardised biomarkers across the SMA spectrum. Essential to supporting ongoing SMA/neuropathy research and future therapeutic development is the availability of human bio specimens. As such, it is essential to establish specific research infrastructures to ensure collection and management of high-quality samples and data.

The present study is designed to address these issues by establishing an Australian biobank for paediatric peripheral nerve disorders, with an initial focus on spinal muscular atrophy (SMA). This will provide a rich resource for future studies, to expand scientific knowledge regarding pathophysiology and treatment responses, extending our clinical and neurophysiological prospective ‘new natural history’ studies. The present project is built upon years of strong collaborative work and represents a key step essential to further interdisciplinary innovative research.

Funding will be utilised to support a research co-ordinator within the neuromuscular research team to establish the collaborative biobanking programme to support long-term biomarker studies. The goal is to implement the infrastructure, capability and standard operative procedures to initiate a long-term programme of paediatric peripheral neuropathy biological sample collection and storage. This will provide a rich resource for numerous studies to guide future therapeutic development.

Final Report